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ABSTRACT1
This paper proposed a simulation-based optimization framework to identify the route choices pat-2
terns with an event-driven transit network loading model. Five optimizers of three main brunches3
of SBO methods are applied in this paper for comparative analysis, which includes Nelder-Mead4
Simplex Algorithm (NMSA), Mesh Adaptive Direct Search (MADS), Simultaneous Perturbation5
Stochastic Approximation, Bayesian Optimization (BYO) and Constrained Optimization using Re-6
sponse Surfaces (CORS). We use the real-world metro system of Hong Kong Mass Transit Railway7
(MTR) as the testbed. The results show the response surface methods (BYO and CORS) have the8
fastest convergence speed. They can also reach the lowest objective function value. Specially, the9
CORS method has the best performance over other SBO techniques.10

11
Keywords: Simulation-based optimization, Route choice estimation, Smart card data12
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INTRODUCTION1
Motivation2
Urban rail systems are important components of the urban transportation system. Given their3
high reliability and large capacity, urban rail services attract high passenger demand, but this can4
also lead to problems such as overcrowding, disturbances and disruptions, which dramatically5
decrease level of service and impose negative effects on passengers. To maintain service reliability6
and develop efficient response strategies, it is crucial for operations to understand the passenger7
demand and flow patterns in the urban rail network.8

The implementation of a transit assignment (simulation) model for metro systems provides9
a powerful instrument for network performance monitoring, which enables operators to charac-10
terize the level of service and make decisions accordingly. A typical simulation model requires11
Origin-Destination (OD) matrix and route choice fractions as input. Thanks to the wide deploy-12
ment of automated fare collection (AFC) systems, the OD demand can be directly observed from13
recorded transactions. However, obtaining the corresponding route choices remains a challenge14
for both industry and academia. Once route choices are obtained, operators can easily leverage15
the assignment model to identify the network performance, then adjust the operation strategies16
accordingly to relieve congestion, improve efficiency, etc..17

Related work18
The traditional way to calibrate route choices is on-site survey, for which researchers ask peo-19
ple’s real-world route choices and estimated a choice model to construct the route choice fractions.20
However, these survey-based methods are time-consuming and labor-intensive, limiting their abil-21
ity to real-world practice. In addition, the results are only valid for current network and can’t be22
used to test counter-factual scenarios and hard to update when network changes. To overcome23
these disadvantages, many new methods based on AFC data has been proposed.24

AFC systems are designed to conveniently charge passengers who use the metro system.25
When passengers tap in or tap out in the system with a smart card, the exact locations and time of26
the transactions will be recorded, which provide rich information for analyzing passenger behav-27
iors. On the context of route choice estimation, the AFC data-based methods can be categorized28
into two groups: the route-identification methods (1–3) and the parameters-inference methods (4–29
7). The former studies aimed to identify the exact route chosen by each user. The route attributes30
are used to evaluate how likely a passenger’s trip from their observed origin to their observed desti-31
nation was taken along any possible route. While the latter studies formulated probabilistic models32
to describe passengers’ decision-making behaviors. Bayesian inference is usually used to estimate33
the corresponding parameters and thus derive the route choice fractions. Despite using different34
methods, the key component for those AFC data-based studies are similar. They all attempted to35
match the model-derived journey time with the observed journey time from AFC data. However,36
a shortcoming for these studies is that the denied-boarding phenomenon is not well addressed (8).37
In a congested metro system, passengers are likely to be denied boarding due to the limited ca-38
pacity of trains. Denied boardings will increase the passengers’ waiting time on the platform, thus39
increasing their total travel time. It is possible that the journey time for a longer-distance route40
without denied boarding is close to the journey time of a shorter-distance route with multiple de-41
nied boardings, which makes the two routes indistinguishable for the purely journey time-based42
methods (9).43

To address the denied-boarding phenomenon in route choice estimation problems, it is44
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important to incorporate the transit assignment model with the information of network topology1
and train operation schedule (8). By setting the network loading criteria of the transit assign-2
ment model, we can naturally incorporate the denied-boarding phenomenon in the congested net-3
work, which not only considers the denied boarding itself, but also the internal correlation of4
denied-boarding probability among different stations (8). However, as known in the literature, the5
schedule-based dynamic transit assignment is a complicated problem without direct closed form6
(10). A typical way to deal with the non-analytic problem is the simulation-based (black-box)7
optimization (SBO) methods. SBO methods are designed to solve optimization problems where8
the objective function and its derivatives are difficult and expensive to evaluate, which have been9
widely used to solve the problems of congestion pricing (11, 12), traffic signal control (13–16),10
transit scheduling (17), ride sharing (18), supply chain management (19), liner shipping (20) and11
more. Particularly, in the domain of route choice estimation, Cheng et al. (21) developped a SBO12
method to calibrate the day-to-day route choice for road traffic systems with license plate recogni-13
tion data. However, the SBO methods have not been applied to urban rail system for route choice14
calibration problem. In general, there are three classes of methods for the SBO, including the15
direct search method, the gradient-based method, and the response surface (meta-model) method16
(13). None of the previous studies has compared the effectiveness of different SBO methods on17
the route choice estimation.18

Paper objectives and organization19
In this study, we proposed a SBO framework to identify the route choices patterns with an event-20
driven transit network loading (TNL) model (22). Five optimizers of three main brunches of SBO21
methods are applied in this paper for comparative analysis, which includes Nelder-Mead Simplex22
Algorithm (NMSA), Mesh Adaptive Direct Search (MADS), Simultaneous Perturbation Stochas-23
tic Approximation, Bayesian Optimization (BYO) and Constrained Optimization using Response24
Surfaces (CORS). The paper focuses on SBO techniques with good short-term performance. That25
is, we compare the all the SBO methods within a tight computational budget. The computational26
budget is defined as a limited number of simulation runs. Such techniques respond to the needs27
of transportation practitioners by allowing them to address problems in a practical manner. We28
use the real-world metro system of Hong Kong Mass Transit Railway (MTR) as the testbed. The29
results show the response surface methods have the fastest convergence speed. They can also reach30
the lowest objective function value. Specially, the CORS method has the best performance over31
other SBO techniques.32

This remainder of this paper is organized as follows: In Section 2, we propose the modeling33
framework, which contains several components including mode assumption, problem definition34
and description of all SBO methods. We apply the proposed framework on the Hong Kong MTR35
network as a case study in Section 3. The quantitatively model comparison based on the synthetic36
AFC data are conducted. Finally, we conclude our study, summarize our main findings and discuss37
future research directions in Section 4 .38

METHDOLOGY39

Transit network loading model40
To perform the SBO methods, we first need a simulation engine which can take the decision vari-41
ables as input and output the data for calibration. In this study, the transit network loading (TNL)42
model is used as the simulation engine. TNL models aim to assign passengers over a transit net-43
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work given the (dynamic) OD entry demand and route choice. The schedule-based TNL models1
are more appropriate for this study because they can capture the detailed travel behaviors in the2
network (e.g. queuing, transferring, boarding and alighting) and thus is closer to reality than the3
frequency-based TNL model (23). In this study, we applied an event-driven schedule-based TNL4
model (8, 24) as the simulator. The model takes OD entry demand (tap-in passengers), route choice5
parameters, time table and infrastructure information (e.g. train capacity, walking time distribu-6
tion) as input, and output the passengers’ tap-out time, train load, waiting time, and any other7
network indicators of interests.8

(a) Train arrival

(b) Train departure

FIGURE 1: Event-based Transit Network Loading Model Structure

Figure 1 illustrates the structure of the model. Three objects are defined: train, waiting9
queue (on platform), and passengers. An event is defined as a train arrival at, or departure from,10
a station. Events are ordered chronologically. New and transferring passengers join the waiting11
queue on the platform and board a train based on the FIFB criteria. The number of boarding12
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passengers depends on the available train capacity.1
The assignment model works by generating a train event list (arrivals and departures) based2

on the timetable or the actual train movement data from AVL, and then sequentially processing the3
ordered events until all events are processed for the time period of interest. To process an individual4
event,5

• If the event is an arrival (Figure 1a), the train offloads passengers and updates its state (e.g.6
train load and in-vehicle passengers). From the alighting passengers, those who transfer at7
that station, are assigned to the waiting queues on the corresponding transfer platforms (e.g8
passengers transferring to platform B in the graph). Passengers who tap-out at this station9
will be removed from the system. New tap-in passengers who entered the station between10
two events are added into the queue. Then, the waiting queue objects for these platforms are11
updated accordingly.12

• If the event is a departure (Figure 1b), passengers board trains based on a FIFB boarding13
priority rule. If the on-board passengers reached the train capacity, the remaining passengers14
at the platform will be denied boarding. Finally, the state of the train (train load and in-vehicle15
passengers) and the waiting queue at the platform are updated accordingly.16

Problem definition17
Consider a general urban rail network within a specific time period T , which is represented as18
G = (S,A), where S is the set of stations and A is the set of directed links. We divide T into several19
time intervals with equal width τ . Denote the set of all time intervals as T = {1,2, ...,T/τ}. We20
define a concept called Time-space (TS) node as im, where i ∈ S and m ∈T . im represents the state21
of station i during time interval m. Considering an OD pair (i, j), we denote the OD entry flow as22
qim, j, which represents the number of passengers entering at station i during time interval m and23
exiting at station j. qim, j is the OD demand input for TNL model. Another variable related to OD24
entry flow is the OD exit flow, denoted as qi, jn , which represents the number of passengers exit at25
station j during time interval n with origin i. qi, jn is the output of TNL model. Importantly, the26
ground truth qi, jn can be obtained from the AFC data. Therefore, qi, jn can be used to calibrate the27
route choice.28

We denote the ground truth OD exit flow as q̃i, jn . Then ∑i, jn(q
i, jn − q̃i, jn)2 (square differ-29

ence) can be one term of the objective function which we want to minimize. However, qi, jn only30
captures the information of exit demand volume. The entry time information is not included. It is31
possible that the model can output similar qi, jn but the flows may come from different entry time32
compared to the ground truth. To capture the entry time information, we introduce another param-33
eter named journey time distribution (JTD). For all passengers belong to qi, jn , we denote the JTD34
for origin i, destination j and exit time interval n as pi, jn(x). pi, jn(x) can be calculated by the kernel35
density method (25) given the passengers’ journey time samples. Therefore, we can output pi, jn(x)36
from the TNL model. And the ground truth JTD can also be obtained from AFC data, which is37
represented by p̃i, jt (x). We can formulate the difference of two distributions as Kullback-Leibler38
(KL) divergence (DKL), that is:39

DKL(pi, jn(x)||p̃i, jn(x)) =
∫

x
pi, jn(x) · log

pi, jn(x)
p̃i, jn(x)

dx. (1)

To avoid the unstable estimation of pi, jt (x), only the OD pairs with more than 50 passengers exit40
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in a specific time interval are considered for DKL calculation (i.e. qi, jn > 50). Denote the set1
of corresponding OD pairs and exit time intervals as D , where D = {(i, jn) | qi, jn > 50}. Then,2
∑i, jn∈D DKL(pi, jt (x)||p̃i, jt (x)) can be another item in the objective function. Therefore, we can3
formulate the route choice estimation problem as the following.4

min
β

w1 ∑
i, jn

(qi, jn− q̃i, jn)2 +w2 ∑
i, jn∈D

DKL(pi, jn(x)||p̃i, jn(x))

s.t. qi, jn = TNL(β ,qim, j,θ) ∀i, jn,

pi, jn(x) = TNL(β ,qim, j,θ) ∀i, jn ∈D ,

Lβ ≤ β ≤Uβ

(2)

where β is the parameters of route choice model; Lβ and Uβ are the predefined lower bound and5
upper bound of β . These variables and parameters will be defined and explained in the model6
assumption section. w1 and w2 are the weights to balance the scale of two terms. θ is the external7
parameters for the TNL model, including time table (or AVL data), transit network typology, ac-8
cess/egress/transfer time, and train capacity. Since the TNL model has no analytic form, Eq. 2 is a9
bound-constrained SBO problem. In the following section, we will show five different algorithms10
which belongs to three categories of SBO methods to solve this problem.11

Model assumption12
Two major assumptions are made for the model and are presented below. First, we assume route13
choice behavior can be formulated as a C-logit model (26), which is an extension of multinomial14
logit (MNL) model. The choice fraction of route r for OD pairs (i, j) in time interval m can be15
formulated as below.16

pim, j
r =

exp(βX ·Xr,m +βCF ·CFr)

∑r′∈Ri j exp(βX ·Xr′,m ++βCF ·CFr′)
:=

exp(βYr,m)

∑r′∈Ri j exp(βYr′,m)
, (3)

where Xr,m is the vector of attributes for route r in time interval m, which include in-vehicle time,17
number of transfers, transfer walking time and map distance. Ri j is the route set for OD pair (i, j),18
where r ∈Ri j. CFr is the commonality factor of route r which measures the degree of similarity19
of route r with the other routes of the same OD. βX and βCF are the corresponding coefficients to20
be estimated. For simplicity, we define the β and Yr,m as the combination of the two terms in the21
utility function. The CFr can be expressed as following.22

CFr = ln ∑
r′∈Ri j

(
Lr,r′

LrLr′
)γ , (4)

where Lr,r′ is the number of common stations of route r and r′. Lr and Lr′ are the number of stations23
for route r and r′, respectively. γ is a positive parameter which is assigned to 5 based on empirical24
studies (27). Typical MNL models assume alternatives are independent and irrelevant (IIA). When25
two different routes have overlapping segments, this assumption will not hold. C-logit model26
can address the route overlapping problem with the correction term CF , which is widely used in27
modeling route choices (28). Also, it remains the formulation of MNL, which is practical and easy28
to compute.29

For the purpose of parameters inference, we also assume we have a reasonable boundary30
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for all parameters β . The boundary can be obtained by from the prior knowledge and previous1
survey results. Denote the upper bound as Uβ and lower bound as Lβ , where Uβ and Uβ are both2
vectors with the same cardinality of β . Then we have3

Lβ ≤ β ≤Uβ , (5)

which is added into the constraints in the SBO problem (Eq. 2).4
Another set of assumptions are related to the network loading criteria. We assume the5

following rules.6
• When loading a train, passengers waiting at the platform are loaded based on a First-In-First-7

Board (FIFB) principle.8
• Every train has a strict physical capacity. When on-board passengers reach the capacity, the9

remained passengers will be denied boarding and wait in the platform for next available train.10
• All transit services arrive on time. Timetable is sufficiently reliable and can be considered11

as deterministic (29). This assumption can be relaxed when the automated vehicle location12
(AVL) data is available, which can provide the ground-truth train arrival and departure time.13

• The distribution of access walking time, egress walking time and transfer walking time are14
known.15

• The platform has infinite capacity to serve waiting passengers16
All these network loading criteria have been incorporated into the TNL model.17

Simulation-based optimization algorithms18
In general, there are three classes of methods for the SBO, including the direct search method, the19
gradient-based method, and the response surface method (13, 30). Direct search can be defined20
as the sequential examination of trial points generated by a certain strategy. Then it compares21
the function values of these trial points directly without approximating derivatives. These meth-22
ods remain attractive as they are easy to describe and implement. More importantly, it is suitable23
for objective functions where gradients does not exist everywhere. Gradient-based approaches24
(or stochastic approximation method) attempt to optimize the function values using estimated25
gradient information. These methods aim to imitate the steepest descent methods in derivative-26
based optimization. Finite difference schemes can be used to estimate gradients. Response surface27
methodology is useful in the context of continuous optimization problems. It focuses on learning28
input-output relationships to approximate the underlying simulation by a pre-defined functional29
form (also known as a meta-model or surrogate model). This functional form can then be used for30
optimization leveraging powerful derivative-based optimization techniques.31

In this study, we applied five different algorithms belonging to these three classes of SBO32
methods to solve the aforementioned route choice estimation problem. The summary of all algo-33
rithms is described in Table 1. The details of all algorithms will be introduced in the following.34

Nelder-Mead Simplex Algorithm35
The Nelder-Mead Simplex Algorithm (NMSA) is a simplex method for finding a local minimum36
of the objective function Nelder and Mead (36). NMSA in n dimensions maintains a set of n+ 137
test points arranged as a simplex. Denote the initial value of β as β ini, the initial simplex sets38
{β0,β1, ...,βn} is generated as:39
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TABLE 1: Algorithms Summary

Category Algorithms Source

Direct search
Nelder-Mead Simplex Algorithm (NMSA) Gao and Han (31)
Mesh Adaptive Direct Search (MADS) Abramson et al. (32)

Gradient-based
Simultaneous Perturbation
Stochastic Approximation (SPSA) Spall et al. (33)

Response surface
Bayesian Optimization (BYO) Snoek et al. (34)
Constrained Optimization using
Response Surfaces (CORS) Regis and Shoemaker (35)

βi =

{
β ini if i = 0
β ini +σ · ei otherwise

(6)

where ei is the unit vector in the i th coordinate, σ is the step-size which is equal to 0.05 in this1
study (31). Based on the initial simplex, the model will evaluate the objective function for each2
test point, in order to find a new test point to replace one of the old test points, and so the technique3
progresses. The new candidate can be generated through simplex centroid reflections, contractions4
or other means depending on the function value of the test points. The process will generate a5
sequence of simplex, for which the function values at the vertices get smaller and smaller. The size6
of the simplex is reduced and finally the coordinates of the minimum point are found.7

Four possible operations: reflection, expansion, contraction, and shrink are associated with8
the corresponding scalar parameters: α1 (reflection), α2 (expansion), α3 (contraction) and α49
(shrink). In this study, we set the value of these parameters as {α1,α2,α3,α4} = {1,2,0.5,0.5}.10
The algorithm is implemented by the Python scikit-learn package. Since NMSA is designed for11
unconstrained problem, we ignore the boundary of β for this algorithm, which turns out not to af-12
fect the results because the searching trajectories of β are found all located in the boundary. More13
details regarding the NMSA can be referred to Gao and Han (31).14

Mesh Adaptive Direct Search15
The MADS algorithm is a directional direct search framework for nonlinear optimization (37).16
Briefly, MADS seeks to improve the current solution by testing points in the neighborhood of17
the current point (the incumbent). The neighborhood points are generated by moving one step18
in each direction from the incumbent on an iteration-dependent mesh. Each iteration of MADS19
comprises of a SEARCH stage and an optional POLL stage. The SEARCH stage evaluates a finite20
number of points proposed by the searching strategy (e.g. moving one step around from current21
point). Whenever the SEARCH step fails to generate an improved mesh point, the POLL step22
is invoked. The POLL step conducts local exploration near the current incumbent, which also23
intends to find an improved point on the mesh. Once an improved point is found, the algorithm24
will update the current point and construct a new mesh. According to Audet and Dennis Jr (37), the25
mesh size parameters will approach zero as the number of iteration approaches to infinity, which26
demonstrates the convergence of MADS algorithm.27

In this paper, we use a variant of MADS method called ORTHO-MADS, which leverages a28
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special orthogonal positive spanning set of polling directions. More details regarding the algorithm1
can be found in Abramson et al. (32). The NOMAD 3.9.1 (38) with Python interface is adopted2
for the MADS algorithm application. The hyper-parameters are tuned based on the NOMAD user3
guide. The direction type is set as orthogonal, with N +1 directions generated at each poll, where4
N is the number of estimated parameters (i.e. N = |β |). Latin Hyper-cube search is not applied.5

Simultaneous Perturbation Stochastic Approximation6
SPSA is a descent method for finding local minimum. It approximates the gradient with only two7
measurements of the objective function, regardless of the dimension of the optimization problem,8
which is also called second-order SPSA. Denote the objective function in Eq. 2 as Z(β ). The9
estimated route choice parameters in the k th iteration is denoted as β (k). Then one iteration for10
the SPSA is performed as11

β
(k+1) = β

(k)−ak · ∇̂Z(β (k)) (7)

where12

∇̃Z(β (k)) =
Z(β (k)+ ck∆k)−Z(β (k)− ck∆k)

2ck∆k
(8)

ak =
a

(k+1+A)α
(9)

ck =
c

(k+1)γ
(10)

∆k is a random perturbation vector, whose elements are obtained from a Bernoulli distribution with13
the probability parameter equal to 0.5. {α,γ,a,c,A} are tuned as {0.602,0.101,0.01,0.03,0.1×14
maximum number of iterations} in this study according to the numerical tests and the empirical15
studies (39).16

Bayesian Optimization17
BYO aims to constructs a probabilistic model for the objective function and then exploits this18
model to determine where to evaluate the objective function for next step. The philosophy of BYO19
is to use all of the information available from previous evaluations, instead of simply relying on20
local gradient and Hessian approximations, which is expected to find the minimum of difficult21
non-convex functions with relatively few evaluations.22

To perform the Bayesian optimization, we must choose a prior distribution for the objective23
function values, and an acquisition function, which is used to determine the next point to evaluate.24
In this study, we choose the Gaussian process prior due to its flexibility and tractability. As for25
the acquisition function, we numerically compare three popular criteria including probability of26
improvement (POI), expected improvement (EI), and upper confidence bound (UCB) (34). Finally27
the EI criterion is used in this route choice estimation problem due to its best performance. More28
details regarding the BYO can be found in Snoek et al. (34).29

Constrained Optimization using Response Surfaces30
CORS is a response surface methods for global optimization. In each iteration, it updates the re-31
sponse surface model based on all previously probed points, and selects the next point to evaluate.32
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The principles for next points selection are: (a) finding new points that have lower objective func-1
tion value, and (b) improving the fitting of response surface model by sampling feasible regions2
where little information exists. Hence, the next point is selected by solving the minimization prob-3
lem of current response surface function subject to constraints that the next point should be more4
than a certain distance from all previous points (35).5

Any algorithms follow the CORS framework requires two components: (a) a scheme for6
selecting an initial set of points for objective function evaluation, and (b) a procedure for globally7
approximating the objective function (i.e. a response surface model). In this study, the initial8
sampling is conducted by the Latin hypercube methods, with the initial sampling number equal9
to 0.1 × the total number of function evaluations. The radial basis function (RBS) is used as the10
response model. For the subsequent sampling, a modified version of CORS algorithm with space11
re-scaling is used. Details about the algorithm can be found in Regis and Shoemaker (35) and12
Knysh and Korkolis (40).13

CASE STUDY AND NUMERICAL RESULTS14
For the purpose of model illustration, we apply the proposed modeling framework on Hong Kong15
MTR network.16

Hong Kong MTR Network17
MTR is the operator of Hong Kong urban rail network, which provides services for the urbanized18
areas of Hong Kong Island, Kowloon, and the New Territories. The system currently consists of 1119
lines with 218.2 km (135.6 mile) of rail, serving 159 stations including 91 heavy rail stations and20
68 light rail stops. It uses a smart card fare-payment system named Octopus, which serves over 521
million trips on an average weekday. For the urban heavy rail lines, trip transactions are recorded22
when passengers enter and exit the system, giving the information of the tap-in and tap-out stations23
and timestamps. The map for the Hong Kong MTR system is shown in Fig 2. In this study, we24
remove the airport express and light rail transit services. Passengers who enter the metro system25
from these two services need to re-tap-in. So the remaining network is still a closed system with26
full OD information.27

Case Study Settings28
We use AFC data on March 16th (Thursday), 2017 for the model application. The route sets for29
each OD pair are obtained from the MTR operation team. For route choice behavior, we assume30
the following attributes can quantify route utitilies: (a) total in-vehicle time, (b) number of transfer31
times, (c) total transfer walking time, (d) total map distance, and (e) the commonality factor (Eq. 4).32
Since the evening peak is the most congested period for MTR system and it is highly interested by33
the transportation agency, we only consider the period from 18:00 to 19:00 for model application.34
For simplicity, we assume the route choice fractions are static during this hour, which means only35
one set of β is used. We set the weights in the objective function of Eq. 2 as w1 = 1 and w2 = 5036
to balance the scale of two terms. β ini is set as (Lβ +Uβ )/2. The system parameters θ of TNL37
model are summarized in Table 2.38

Since the real-world route choice information are usually unavailable, it is common to39
quantitatively validate models with synthetic data. To generate the synthetic data, we first extract40
the OD entry flow (qim, j) from the real-world AFC records. A group of route choice parameters41
are chosen based on a previous empirical study (41), which are assumed to be the "true" passenger42
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FIGURE 2: Hong Kong MTR Metro System Map

travel behavior parameters (called synthetic β hereafter). Then, we use the network loading model1
(27) with the true OD entry flow and the synthetic β as input to simulate the travel of passengers2
in the system, and record people’s tap-in and tap-out time. The records of all people’s tap-in and3
tap-out time are treated as synthetic AFC data. For model validation, we can apply the proposed4
model to the synthetic AFC data and compare the estimated β and synthetic β . The value of syn-5
thetic data can be found in Table 3. We set Lβ = [−0.1,−1,−1,−0.1,−1] and Uβ = [0,0,0,0,0]6
accordingly. The sequence of vector elements is same to the sequence in Table 3. To compare7
different algorithms, a fixed computational budget, 100 function evaluations, is applied to all al-8
gorithms. All algorithms except for NMSA (deterministic algorithm) are replicated for 10 times9
(with different random seed) to decrease the impact of randomness. As this paper targets on com-10
parative analysis of SBO algorithms, we use a fixed random seed for the TNL model to eliminate11
the random error brought from simulation. This means the objective function value of the synthetic12
β will be 0, which is helpful to focus on the performance of different SBO methods.13

Numerical results14
The convergence results of all algorithms are depicted in Figure 3. Each point represents the15
average value of all replications. The standard deviations are shown by vertical lines. We found that16
all algorithms can converge to a reasonable stage with relatively small objective function given the17
limited number of function evaluations.The response surface methods (BYO and CORS) have the18
fastest convergence speed. They can also reach the lowest objective function value, especially for19
the CORS algorithm. This is corresponding to previous point of views regarding the SBO methods20
in the transportation domains (13, 21). In terms of algorithm stability, NMSA is a deterministic21
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TABLE 2: Summary of TNL External Parameters θ

Variables Description Source

Acess/Egress walking
time

Platform-specific with mean and deviation
MTR field
measurement

Transfer walking time Platform-specific with mean and deviation
MTR field
measurement

Time table

True time table for the test date, which also includes
the number of cars for each train. Future research
can use AVL data to get real-world train arrival and
departure information

MTR operation
team

Capacity 230 passengers per car.
MTR service
standard

Warm up and Cool down 60 minutes warm up and cool down time Mo et al. (8)

algorithm, which is not affected by the randomness. All other algorithms have big uncertainty at1
the first half iterations. As the number of function evaluations increase, the standard deviations2
will decrease and the results become stable. MADS is the most unstable algorithm in this study.3
This may be due to that MADS can probably converge to some non-stationary points (42). As for4
response surface methods, although BYO and CORS have similar performance in terms of final5
objective function, CORS is much more stable than BYO. This is reasonable becasue BYO is based6
on probabilistic models, where function evaluations contain more uncertainty.

FIGURE 3: Convergence Results of SBO Algorithms.

7
Table 3 compares the best estimated parameters of different algorithms with the synthetic8

ones. Despite some algorithms can reach similar objective function value, they can output different9
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results of β . For example, NMSA has good estimation of coefficients of in-vehicle time, number1
of transfers, but bad estimation in the commonality factor. SPSA also shows the similar properties.2
While CORS and BYO has the good estimation in all coefficients. Overall, the results demon-3
strate all algorithms can output reasonable estimation of route choice parameters, which means the4
proposed SBO framework using AFC data is effective.5

TABLE 3: Optimal β Estimation Results

Variable Name Synthetic
Estimated

NMSA MADS SPSA BYO CORS

In-vehicle time -0.0663 -0.0656 -0.0542 -0.0693 -0.0623 -0.0645
Number of transfers -0.438 -0.430 -0.310 -0.301 -0.464 -0.445
Transfer walking time -0.183 -0.143 -0.180 -0.213 -0.170 -0.184
Map distance -0.0767 -0.0639 -0.100 -0.0946 -0.0792 -0.0739
Commonality factor -0.941 -0.676 -0.900 -0.676 -0.948 -0.969

Objective function 0 25795.9 24447.22 25092.22 17551.51 16300.0

CONCLUSION AND DISCUSSION6
In this paper, we proposed a SBO framework to estimate the route choice behaviors in metro7
systems using AFC data. Five different algorithms which cover three main brunches of SBO8
methods are applied and compared in this study. The advantage of this framework lies in the9
incorporation of TNL model in route choice estimation, which can consider the internal correlation10
of denied boarding probabilities among different stations. We applied the proposed framework11
on the Hong Kong MTR network, and compared the performance of different algorithms, which12
illustrates the effectiveness of our methods.13

The developments in this paper have been focused on a general framework, while the mod-14
els and examples we presented in this paper still have some limitations. First, we only validate15
the framework on synthetic AFC data, which ignores the noise and some uncertainties in the real-16
world. This is caused by the absence of real-world route choice information. Future research can17
collect the real-world route choice data to conduct more realistic model validation. Second, we18
imposed a strong assumption on route behavior modeling, that is, only one set of β is applied for19
the whole network. The real-world route choice behaviour may be more diverse and heteroge-20
neous. Future research can cluster different OD pairs with different β based on the corresponding21
passengers’ characteristics. Third, the estimated parameters in the case study are simplified with-22
out considering the temporal dynamics. In practice, to obtain time dependent parameters, we can23
divide the data set into slices and apply the framework on each of them.24

Nevertheless, the overall framework has demonstrated good capability in route choice es-25
timation. As an important component for assignment model, route choice behaviors are always26
interesting to operators. Applying the inference results on assignment model (27), link flow profile27
can be estimated in temporal scale. The results could also be used to identify critical transfer sta-28
tions/platforms, providing valuable information to operators to better design and operate the whole29
metro system.30
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